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Abstract 

Kalman filters are often used to estimate the state variables of a dynamic system. 

However, in the apphcation of Kalman filters some known signal information is often 

either ignored or dealt with heuristically. For instance, state variable constraints 

(which may be based on physical considerations) are often neglected because they 

do not fit easily into the structure of the Kalman filter. This paper develops two an- 

alytic methods of incorporating state variable inequality constraints in the Kalman 

filter. The first method is a general technique of using hard constraints to enforce 

inequalities on the state variable estimates. The resultant filter is a combination of a 

standard Kalman filter and a quadratic programming problem. The second method 

uses soft constraints to estimate state variables that are known to vary slowly with 

time. (Soft constraints are constraints that are required to be approximately satis- 

fied rather than exactly satisfied.) The incorporation of state variable constraints 

increases the computational effort of the filter but significantly improves its estima- 

tion accuracy. The improvement is proven theoretically and shown via simulation 

♦Corresponding author. This work was supported in part by a NASA/ASEE Summer 
Faculty Fellowship. 
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results. The use of the algorithm is demonstrated on a linearized simulation of a 

turbofan engine to estimate health parameters. The turbofan engine model con- 

tains 16 state variables, 12 measurements, and 8 component health parameters. It 

is shown that the new algorithms provide improved performance in this example 

over unconstrained Kalman filtering. 

1    Introduction 

For hnear dynamic systems with white process and measurement noise, the Kalman 

filter is known to be an optimal estimator. However, in the application of Kalman 

filters there is often known model or signal information that is either ignored or 

dealt with heuristically [1]. This paper presents two ways to generalize the Kalman 

filter in such a way that known inequality constraints among the state variables are 

satisfied by the state variable estimates. 

The first method presented here for enforcing inequality constraints on the state 

variable estimates uses hard constraints. It is based on a generalization of the ap- 

proach presented in [2], which dealt with the incorporation of state variable equality 

constraints in the Kalman filter. Inequality constraints are inherently more compli- 

cated than equality constraints, but standard quadratic programming results can be 

used to solve the Kalman filter problem with inequality constraints. At each time 

step of the constrained Kalman filter, we solve a quadratic programming problem 

to obtain the constrained state estimate. A family of constrained state estimates is 

obtained, where the weighting matrix of the quadratic programming problem deter- 

mines which family member forms the desired solution. It is stated in this paper, 

on the basis of [2], that the constrained estimate has several important properties. 

The constrained state estimate is unbiased and has a smaller error covariance than 

the unconstrained estimate. We show which member of all possible constrained so- 

lutions has the smallest error covariance. We also show the one particular member 

that is always (i.e., at each time step) closer to the true state than the unconstrained 

estimate. 
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The second method for enforcing inequaUty constraints uses soft constraints 

via a penalty term in the Kalman filter optimization problem. This prevents the 

state estimate from changing too rapidly. It essentially smooths the unconstrained 

Kalman filter estimate when the state variables are known to vary slowly with time. 

It is shown that the constrained state estimate is unbiased, approaches the uncon- 

strained estimate as time approaches infinity, and (under certain special conditions) 

is equal to the running average of the unconstrained estimate. 

The application considered in this paper is turbofan engine health parameter 

estimation [3], The performance of gas turbine engines deteriorates over time. This 

deterioration reduces the fiiel economy of the engine. Airhnes periodically collect 

engine data in order to evaluate the health of the engine and its components. The 

health evaluation K then used to determine maintenance schedules, ReMable health 

evaluations are used to anticipate future maintenance needs. This offers the benefits 

of improved safety and reduced operating costs. The money-saving potential of such 

health evaluations is substantial, but only if the evaluations are reliable. The data 

used to perform health evaluations are typically collected during flight and later 

transferred to ground-based computers for post-flight analysis. Data are collected 

each flight at the same engine operating points and corrected to account for vari- 

abihty in ambient conditions. Typically, data are collected for a period of about 

3 seconds at a rate of about 10 or 20 Hz. Various algorithms have been proposed 

to estimate engine health parameters, such as weighted least squares [4], expert 

systems [5], Kalman filters [6], neural networks [6], and genetic algorithms [7]. 

This paper appHes constrained Kalman filtering to estimate engine component 

efficiencies and flow capacities, which are referred to as health parameters. We can 

use our knowledge of the physics of the turbofan engine in order to obtain a dynamic 

model [8, 9], The health parameters that we try to estimate can be modelled as 

slowly varying biases. The state vector of the dynamic model is augmented to include 

the health parametere, which are then estimated with a Kalman filter [10], The 

model formulation in this paper is similar to previous NASA work [11], However, [11] 

was limited to a 3-state dynamic model and 2 health parametere, whereas this 
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present work includes a more complete 16-state model and 8 health parameters. In 

addition, we have some a priori knowledge of the engine's health parameters: we 

know that they never improve. Engine health always degrades over time, and we can 

incorporate this information into state constraints to improve our health parameter 

estimation. (This is assuming that no maintenance or engine overhaul is performed.) 

This is similar to the probabihstic approach to turbofan prognostics proposed in [12]. 

It should be emphasized that in this paper we are confining the problem to the 

estimation of engine health parameters in the presence of degradation only. There 

are specific engine cases that can result in abrupt shifts in filter estimates, possibly 

even indicating an apparent improvement in some engine components. An actual 

engine performance monitoring system would need to include additional logic to 

detect and isolate such faults. 

Section 2 presents a discussion of the standard discrete time Kalman filter. Some 

important properties of the Kalman filter that will be used later in this paper are 

also reviewed. Section 3 generalizes the results of [2] to hard inequality constraints. 

This inequality-constrained Kalman filter has several attractive theoretical proper- 

ties, including state variable estimates that are unbiased, an estimation error vari- 

ance smaller than the unconstrained filter, and a time-domain estimation error that 

is always smaller than the unconstrained estimation error. Section 4 extends the 

standard Kalman filter in a different way for those cases where it is known that the 

state variables change slowly with time. This constraint is enforced by finding a new 

state estimate that is "close" to the unconstrained estimate in some sense, but that 

is slowly time varying. It is shown that this new estimate is unbiased, approaches 

the unconstrained estimate as time goes to infinity, and (under certain conditions) 

is equal to the running average of the unconstrained estimate. 

Section 5 discusses the problem of turbofan health parameter estimation, along 

with the dynamic model that we used in our simulation experiments. Although the 

health parameters are not state variables of the model, it is shown how the dynamic 

model can be augmented in such a way that a Kalman filter can estimate the health 

parameters [10, 11]. We then show how this problem can be expressed in such 

a way to be compatible with the constraints discussed in the preceding sections. 
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Section 6 presents some simulation results based on a turbofan model linearized 

around a known operating point. We show that the Kalman filter can estimate 

health parameters with an average error of less than 0.2%, and the constrained 

Kalman filters perform better than the unconstrained filter. Section 7 presents 

some concluding remarks and suggestions for further work. 

2    Kalman Filtering 

This section reviews standard (unconstrained) state estimation via the Kalman filter 

and some important properties of the filter that will be used later in this paper. The 

results and notation are taken from [13]. Consider the discrete linear time-invariant 

system given by 

Xk+i   =   Axk + Buk + Wk (1) 

Vk   =   Cxk + ek 

where k is the time index, x is the state vector, u is the known control input, y 

is the measurement, and {wk} and {cfc} are noise input sequences. The problem 

is to find an estimate Xk+i of Xk+i given the measurements {yo,yir- •,yk}. We 

will use the symbol Yk to denote the column vector that contains the measurements 

{yo,yi,- ■ • ,yfc}- We assume that the following standard conditions are satisifed. 

E[xo] = XQ (2) 

E[wk]=E[ek] = 0 (3) 

E[{XQ - xo){xo - xo)"^] = So (4) 

E[wkw'g] = Q6km (5) 

E[ekeU = R6km (6) 

E[wke'^] = E[xkeZ] = E[xkwg] = 0 (7) 

where E[-] is the expectation operator, x is the expected value of x, and 4„ is the 

Kronecker delta function (4^ = 1 if fc = m, 0 otherwise). Q and R are positive 

semidefinite covariance matrices. The Kalman filter equations are given by 

Kk   =   AllkC^iCEkC^ + R)-^ (8) 

NASA/TM—2(K)3-212111 



Xfc+i    =   Axk-\-Buk + Kk{y,,-Cxk) (9) 

Efc+i    =   {Ai:k-KkCEk)A^ + Q (10) 

where the filter is initiahzed with fo = -^O; and So given above. It can be shown [13] 

that the Kalman filter has several attractive properties. For instance, if 3;o, {wk}, 

and {cfe} are jointly gaussian, the Kalman filter estimate Xk-i-i is the conditional 

mean of Xk+i given the measurements Yk] i.e., x^+i = -E'l^^fc+il^fc]- Even if XQ, 

{wk}, and {cfe} are not jointly gaussian, the Kalman filter estimate is the best affine 

estimator given the measurements Y^; i.e., of all estimates of x^+i that are of the 

form FYk + g (where F is a fixed matrix and g is a fixed vector), the Kalman filter 

estimate is the one that minimizes the variance of the estimation error. It can be 

shown [13, pp. 92 fl[.] that the Kalman filter estimate (i.e., the minimum variance 

estimate) can be given by 

Xk+i = Xk+i = Xk+-i + T,,-ryT,~]{Yk - Yfc) (11) 

where Xk+i is the mean of x^+i, T,xy is the variance matrix of x^+j and Yk, T,yy 

is the covariance matrix of Yk, and Xk+i is the conditional mean of Xk+i given 

the measurements Yk. In addition, from [13, p. 93] we know that the Kalman 

filter estimate Xk+i and Yk are jointly gaussian, in which case Xk+i is conditionally 

gaussian given Yk- The conditional probability density function of x^+i given Yk is 

P(^\Y\ _ exp[-(x - xfE-^x - x)/2] 
^  '^ - (27r)"/2|E|V2 ^^^> 

where n is the dimension of x and 

^ == ^xx ~ ^xy^yy ^yx (I'^j 

The Kalman filter estimate is that value of x that maximizes the conditional prob- 

abiHty density function P{x\Y), and E is the covariance of the Kalman filter esti- 

mation error. 
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3    Kalman Filtering with Hard Inequality Con- 
straints 

This section extends the well known results of the previous section to cases where 

there are known linear inequality constraints among the state components. Also, 

several important properties of the constrained filter are discussed. Consider the 

dynamic system of (1) where we are given the additional constraint 

Dxk < dk (14) 

where D is a known sxn constant matrix, s is the number of constraints, n is the 

number of state variables, and s < n. It is assumed in this paper that D is fiiU 

rank, i.e., that D has rank s. This is an easily satisfied assumption. If D is not fiiU 

rank that means we have redundant state constraints. In that case we can simply 

remove Mnearly dependent rows from D (i.e., remove redundant state constraints) 

until D is full rank. Three different approaches to the constrained state estimation 

problem are given in this section. The time index k is omitted in the remainder of 

this section for ease of notation. 

3.1    The Maximum Probability Method 

In this section we derive the constrained Kalman filtering problem by using a max- 

imum probabiUty method. Prom [13, pp. 93 ff.] we know that the Kalman filter 

estimate is that value of x that maximizes the conditional probability density func- 

tion P{x\Y), which is given in (12). The constrained Kalman filter can be derived 

by finding an estimate x such that the conditional probabiUty P{x\Y) is maximized 

and X satisfies the constraint (14). Maximizing P(5|F) is the same as maximizing 

its natural logarithm. So the problem we want to solve can be given by 

maxlnP{x\Y)   =^   min{x-x)'^'E'^{x-x) (15) 

such that Dx     <     d 
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Using the fact that the unconstrained state estimate x = x (the conditional mean 

of x), we rewrite the above equation as 

mjn(a:^E~^x - 2x!^T,-^x) such that Dx < d (16) 

Note that this problem statement depends on the conditional gaussian nature off, 

which in turn depends on the gaussian nature of XQ, {W^}, and {ck} in (1). 

3.2 The Mean Square Method 

In this section we derive the constrained Kalman filtering problem by using a mean 

square minimization method. We seek to minimize the conditional mean square 

error subject to the state constraints. 

min^dlx - f f |r) such that Dx < d (17) 
X 

where || ■ || denotes the vector two-norm. If we assume that x and Y are jointly 

gaussian, the mean square error can be written as 

E{\\x-xf\Y)   =    j{x-xf{x-x)P{x\Y)dx (18) 

=     / x'^xP{x\Y)dx - 2x^ I xP{x\Y)dx + x^x (19) 

Noting that the Kalman filter estimate is the conditional mean of .T, i.e., 

x=fxP{x\Y)dx (20) 

we formulate the first order conditions necessary for a minimum as 

min(f-^5 — 2x'^x) such that Dx < d (21) 
X 

Again, this problem statement depends on the conditional gaussian nature of x, 

which in turn depends on the gaussian nature of 3;o, {wk}, and {ck} in (1). 

3.3 The Projection Method 

In this section we derive the constrained Kalman filtering problem by directly pro- 

jecting the unconstrained state estimate x onto the constraint surface. That is, we 
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solve the problem 

min(5 - x)'^W{x - x) such that Dx<d (22) 

where W is any symmetric positive definite weighting matrix. This problem can be 

rewritten as 

mmisFWx - 2SFWx) such that Dx < d (23) 

The constrained estimation problems derived by the maximum probabihty method (16) 

and the mean square method (21) can be obtained from this equation by setting 

W = S~^ and PT = J respectively.   Note that this derivation of the constrained 

estimation problem does not depend on the conditional gaussian nature of x; i.e., 

a^Os {wfc}, and {cfc} in (1) are not assumed to be gaussian. 

3.4    The Solution of the Constrained State Estimation 
Problem 

The problem defined by (23) is known as a quadratic programming problem [14, 15]. 

There are many algorithms for solving quadratic programming problems, almost all 

of which fall in the category known as active set methods. An active set method 

uses the fact that it is only those constraints that are active at the solution of the 

problem that are significant in the optimality conditions. Assume that t of the s 

inequality constraints are active at the solution of (23), and denote by D and d the t 

rows of D and t elements of d corresponding to the active constraints. If the correct 

set of active constraints was known a priori then the solution of (23) would also be 

a solution of the equality-constrained problem 

minix'^Wx - 2x'^Wx) such that Dx = d (24) 

This shows that the inequality constrained problem defined by (23) is equivalent to 

the equality-constrained problem defined by (24). The equality-constrained problem 

was discussed in [2], and so those results can be used to investigate the properties 

of the inequality-constrained problem. 
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3.5    Properties of the Constrained State Estimate 

In this section we examine some of the statistical properties of the constrained 

Kalman filter. We use x to denote the state estimate of the unconstrained Kalman 

filter, and i. to denote the state estimate of the constrained Kalman filter as given 

by (23), recalling that (16) and (21) are special cases of (23). 

Theorem 1 The solution x of the constrained state estimation problem given by (23) 

is an unbiased state estimator for the system, (1) for any symmetric positive definite 

weighting matrix W. That is, 

E{x) = E{x) (25) 

Theorem 2 The solution x of the constrained state estimation problem, given by (23) 

with W ^Tr"^, where E is the covariance of the unconstrained estimate given in (10) 

and (13), has an error covariance that is less than or equal to that of the uncon- 

strained state estimate.  That is, 

Cov{x -x) < Cov{x - x) (26) 

At first this seems counterintuitive, since the standard Kalman filter is by definition 

the minimum variance filter. However, we have changed the problem by introducing 

state variable constraints. Therefore, the standard Kalman filter is no longer the 

minimum variance filter, and we can do better with the constrained Kalman filter. 

Theorem 3 Among all the constrained Kalman filters resulting from the solution 

of (23), the filter that uses W = S~^ has the smallest estimation error covariance. 

That is, 

Cov{x^-i) < Cov{xw) for all W (27) 

Theorem 4 The solution x of the constrained state estimation problem given by (23) 

with W = I satisfies the inequality 

\\xk - Xk\\ < \\xk - Xk\\ for all k (28) 

where \\ ■ \\ is the vector two-norm andx is the unconstrained Kalman filter estimate. 
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Theorem 5 The error of the solution x of the constrained state estimation problem 

given by (23) with W = I is smaller than the unconstrained estimation error in the 

sense that 

TilCovix)] < Tr[Cov{x)] (29) 

where Tr{^ indicates the trace of a matrix, and Coi{-) indicates the covariance matrix 

of a random, vector. 

The above theorems all follow from the equivalence of (23) and (24), and the 

proofs presented in [2], We note that if any of the s constraints are active at the 

solution of (23), then strict inequahties hold in the statements of Theorems 2-5. The 

only time that equahties hold in the theorems is if there are no active constraints at 

the solution of (23); that is, if the unconstrained Kalman filter satisfies the inequality 

constraints, 

4    Kalman Filtering with Soft Inequality Con- 
straints 

In this section we are interested in obtaining a Kalman filter-based state estimate 

for state variables which we know a priori vary slowly with time. Since we are 

concerned with using the Kalman filter as a parameter estimator, we will assume for 

this problem that the A matrix in (1) is the identity matrix and the B matrix is zero. 

With this in mind, we can use the results of the previous section, especially (22), to 

formulate a Kalman filter-based estimate as follows 

min(% - Xk)'^W(xk - Xk) such that x{i} varies slowly (30) 

where, as before, T^ is a constant symmetric positive definite weighting matrix. This 

is a type of regularization; that is, some additional structure is incorporated into 

the Kalman filter estimate [16, 17, 18]. The above problem can be formulated as 

xmn[{xk - XkfW{xk - Xk) + (xk - Xk-ifVkixk - Xk-i)] (31) 
^k 
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where Vk is a (possibly time-varying) symmetric positive definite weighting matrix 

that balances the desire for a close approximation to x and smooth estimate x. The 

solution to the above problem is 

xo   =   E[xo] (32) 

Xk   =   {W + Vk)-HWxk + VkXk-i) 

Since W and Vk are both positive definite, we know that {W + Vk)~^ exists. 

Theorem 6 Assume (as stated above) that A = I and B = 0 in (1). Then the 

solution X of the constrained state estimation problem given by (32) is an unbiased 

state estimator for the system (1) for any symmetric positive definite weighting 

matrices W and Vk.  That is, 

E{x) = E{x) (33) 

Proof: The theorem can be proven by induction. Since A = I and B = 0 we know 

that E[xk] = XQ for all k.  We therefore know from (32) that XQ — XQ.  Prom (32) 

with A; = 0 we see that E[xi] = XQ. We repeat this process to show that E[xk] = 

E[xk] = Xo for all k. 

QED 

Theorem 7 Assume (as stated above) that A = I and B = 0 in (1). Further 

assume that Wk = 0 in (1) (since we are trying to estimate constant parameters). 

Then the constrained state estimate x approaches the unconstrained estimate x in 

the limit as time goes to infinity.  That is, 

lim Xk = hm Xk (34) 
fc—►oo fc—►oo 

Proof: We see from (8)-(10) that, under the conditions stated here, Kk -* 0 as 

k -^ oo. Therefore Xk approaches a constant value as fc —> oo. Prom (32) wc sec 

that, in steady state 

X   =   {W + Vk)-'{Wx + Vkx) (35) 

^x   =   [I-{W + Vk)-Wk]-\W + Vk)-^Wx 

=   {I + W-Wk){W + Vk)-'^Wx 
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where the last equahty follows from the matrix inversion lemma. Premultiplying 

both sides of the above equation by W we obtain Wx = Wx, so if W is invertible 

(which it is, since we are assuming in this section that W is positive definite), we 

obtain x = x {m steady state). Note that the theorem is true even if Vk does not 

approach a steady state value as fc -^ oo, 

QED 

Theorem 8 IfVk = {k-l)W in (32) then Xk is the running average ofxk. 

Proof: The running average of xj. is defined as 

1   * 
^* = iE** (36) 

i=l 

which implies that 

^'=+1 = rrT^^^+i + *^*) (37) k + l 

Now if Vk = ik- l)W then (32) shows that 

Xk+i   =   [ik + l)W]-^Wxk+i+kWxk) (38) 

=   -^^{xk+i + kxk) 

which is exactly the running average shown in (37). 

QED 

5    Turbofan Engine Health Monitoring 

Figure 1 shows a schematic representation of a turbofan engine. A single inlet 

suppHes airflow to the fan. Air leaving the fan separates into two streams: one 

stream passes through the engine core, and the other stream passes through the 

annular bypass duct. The fan is driven by the lorn? pressure turbine. The air passing 

through the engine core moves through the compressor, which is driven by the high 

pressure turbine. Fuel is injected in the main combustor and burned to produce 

hot gas for driving the turbines.   The two air streams combine in the augmentor 
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duct, where additional fuel is added to further increase the air temperature. The air 

leaves the augmentor through the nozzle, which has a variable cross section area. 

Various turbofan simulation packages have been proposed over the years [19, 20, 

21]. This model is based on a gas turbine engine simulation software package called 

DIGTEM (Digital Turbofan Engine Model) [8, 22]. DIGTEM is written in Fortran 

and includes 16 state variables. It uses a backward difference integration scheme 

because the turbofan model contains time constants that differ by up to four orders 

of magnitude. 

The nonlinear equations used in DIGTEM can be found in [8, 9]. The time- 

invariant equations can be summarized as follows. 

X   =   f{x,u,p) + wi{t) (39) 

y   =   g{x,u,p)+e{t) 

X is the 16-element state vector, u is the 6-element control vector, p is the 8-element 

vector of health parameters, and y is the 12-element vector of measurements. The 

noise term w-[{t) represents inaccuracies in the model, and e{t) represents measure- 

ment noise. The elements in these vectors are summarized in Tables 1-4, along with 

their values at the nominal operating point {xo,uo,Po,yQ) considered in this paper. 

Table 4 also shows typical signal-to-noise ratios for the measurements, based on 

NASA experience and previously published data [23]. Sensor dynamics are assumed 

to be high enough bandwidth that they can be ignored in the dynamic equations [23]. 

Equation (39) can be linearized about the nominal operating point by using the first 

order approximation of the Taylor series expansion 

f{x,u,p)   «   fixo,uo,po)+ (40) 

^{x-xo) + ^{u-uo) + ^{p-po) + w^{t) 

g{x,u,p)   ^   g{xQ,UQ,pQ) + -^{x-xo) + -^{u-UQ)^^^(p-pQ) + e{t) 

Therefore, a linear small signal system model can be defined for small excursions 

from the nominal operating point. 

NASA/TM—2003-212111 14 



Sx = x-xo   =   Ai6x + BSu + A%bp + toi (f) (41) 

Sv = y~yQ   =   Ci6x + DSu + C^Sp + e{t) 

We note that 

^'   =   ■£ (42) 

Aa;(j) 

Similar equations hold for the A2, Ci, and C2 matrices.   We obtained numerical 

approximations to the Ai, A2, Cu and C2 matrices by varying a; and p from their 

nominal values (one element at a time) and recording the new x and y vectors in 

DIGTEM. 

Turbofan engine health monitoring is typically a two-step process [3]. In the 

first step, engine data is collected each flight at the same engine operating points 

and corrected to account for variability in ambient conditions. Data are typically 

collected for a period of about 3 seconds per flight at a rate of about 10 or 20 Hz. In 

the second step, the data are transferred to ground-based computers for post-flight 

analysis to determine engine health. 

The goal of our turbofan engine health monitoring problem is to obtain an 

accurate estimate of 6p, which varies slowly with time. We therefore assume that 

6p is constant between measurement times. We also assume that the control input 

is perfectly known, so 6u = 0. This gives us the following equivalent discrete time 

system [24, pp. 90 ff.]. 

6xk+i   =   Aid6xu + A2d6pk-\-wik (43) 

%fc   =   Ci6xk-V C26pk + Bk 

where Aid = exp(^ir) and ^2^ = A{^{Aid -1)^2 (assuming that Ai is invertible, 

which it is in our problem). We next augment the state vector with the health 

parameter vector [11] to obtain the system equation 
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Sxk+-[ Aid   A2d 
0       / 

6xk 

Spk 
+ Wik 

W2k 
(44) 

%A-    =        Ci    C 
6xk 
6pk 

+ efc 

where W2k is a small noise term (uncorrelated with Wik) that represents model 

uncertainty and allows the Kalman filter to estimate time-varying health parameter 

variations. The discrete time small signal model can be written as 

6xk+i 

Spk+i 

hk C 

6Xk 

Spk 

Sxk 

hk 

+ Wk 

+ efc 

(45) 

where the definitions of A and C are apparent from a comparison of the two preced- 

ing equations. Now we can use a Kalman filter to estimate 6xk and 6pk. Actually, 

we are only interested in estimating 8pk (the health parameter deviations), but the 

Kalman filter gives us the bonus of also estimating 8xk (the excursions of the original 

turbofan state variables). 

It is known that health parameters do not improve over time. That is, 6p{\), 

6p{2), 6p{3), 6p{4), 6p{Q), and 6p{8) are always less than or equal to zero and 

always decrease with time. Similarly, 6p{5) and 6p{7) are always greater than or 

equal to zero and always increase with time. In addition, it is known that the health 

parameters vary slowly with time. As an example, since Sp{l) is the constrained 

estimate of 6p{l), we can enforce the following constraints on 6p{l). 

6p{l)   <   0 (46) 

«5k+i(i)  <  s~Pk{^) + it 

%+i(i) > <5pfc(i)-7r 

where 7^" and 7f are nonnegative factors chosen by the user that allows the state 

estimate to vary only within prescribed limits. Typically we choose 7J" > 7^*" so that 

the state estimate can change more in the negative direction than in the positive 
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direction. This is in keeping with our o priori knowledge that this particular state 

variable never increase with time. Ideally we would have 7i" = 0 since 6p{l) never 

increases. However, since the state variable estimate varies around the true value of 

the state variable, we choose 7^ > 0. This allows some time-varying increase in the 

state variable estimate to compensate for a state variable estimate that is smaller 

than the true state variable value. 

These constraints are linear and can therefore easily be incorporated into the 

form required in the constrained filtering problem statement (14). Note that this 

does not take into account the possibility of abrupt changes in health parameters 

due to discrete damage events. That possibility must be addressed by some other 

means (e.g., residual checking [3]) in conjuction with the methods presented in this 

paper. 

6    Simulation Results 

We simulated the methods discussed in this paper using MATLAB. We simulated 

a steady state 3 second burst of engine data measured at 10 Hz during each flight. 

Each of these routine services was performed at the single operating point shown 

in Tables 1-4. The signal-to-noise ratios were determined on the basis of NASA 

experience and previously published data [23] and are shown in Table 4. We used a 

one-sigma process noise in the Kalman filter equal to 1% of the nominal state values 

to allow the filter to be responsive to changes in the state variables. We set the one 

Sigma process noise for each component of the health parameter portion of the state 

derivative equation to 0.01% of the nominal parameter value. This was obtained by 

tuning. It was small enough to give reasonably smooth estimates, and large enough 

to allow the filter to track slowly time-varying parameters. For the filter with hard 

constraints, we chcse the 7 variables in (46) such that the maximum allowable rate 

of change in 6p was a linear 9% per 500 flights in the direction of expected change, 

and 3% per 500 flights in the opposite direction. The true health parameter values 

never change in a direction opposite to the expected change. However, we allow 

the state estimate to change in the opposite direction to allow the Kalman filter 
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to compensate for the fact that the state estimate might be either too large or too 

small. We set the weighting matrix W in (23) and (31) equal to S"^ in accordance 

with Theorem 3. We found by experimenting that setting the weighting matrix Vk 

in (31) equal to 120W resulted in good performance for the Kalman filter with soft 

constraints. 

The first test case we simulated was a linear degradation of the first health 

parameter (fan airflow) over 500 flights, while the other seven health parameters 

remained constant. Figure 2 shows the Kalman filters' performances in this case. We 

ran eight simulations like this. In each simulation, one of the eight health parameters 

degraded hnearly by a factor of 3% during the course of the simulation, while the 

other seven health parameters remained constant. The 3% degradation over 500 

flights is in line with turbofan performance data collected by NASA and reported in 

the literature [25]. Each of the eight cases exhibit performance similar to Figure 2. 

Table 5 shows the performance of the filters averaged over all eight simulations. 

All of the filters estimate the health parameters to within less than 0.2% of their 

nominal values. It can be seen that (on average) the filter with soft constraints 

offers an 11% improvement over the unconstrained filter, and the filter with hard 

constraints offers a 22% improvement over the unconstrained filter. These numbers 

should not be interpreted as having any statistical signficance (due to our limited 

sample size of eight cases) but they do show the improvement that is possible with 

constrained Kalman filters. Table 5 also shows that a couple of health parameters 

(fan airflow and LPT airflow) were actually estimated better with the unconstrained 

filter than with the constrained filter. We therefore see that the constrained filter 

does not guarantee better estimation in every individual sample run, but it does 

guarantee better performance statistically. 

The next scenario we considered was the case where all eight health param- 

eters degrade at the same time. We simulated a degradation over 500 flights of 

-1% for fan airflow, -2% for fan efficiency, —3% for compressor airflow, -2% for 

compressor efficiency, +3% for high pressure turbine airflow, —2% for high pressure 

turbine enthalpy change, +2% for low pressure turbine airflow, and —1% for low 

pressure turbine enthalpy change. This is summarized in Table 6. Figure 3 shows 
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the performance of the Kalman filters in this case. Table 7 shows the performance 

of the filters averaged over 16 simulations like this (each simulation being subject 

to a different random noise history). It can be seen that (on average) the filter with 

soft constraints oifers a 9% improvement over the unconstrained filter, and the filter 

with hard constraints offers a 38% improvement over the unconstrained filter. As 

mentioned above, these numbers should not be interpreted as having any statisti- 

cal signficance (due to our limited sample size of 16 cases) but they do show the 

improvement that is possible with constrained Kalman filters. 

The improved performance of the constrained filters comes with a price, and 

that price is computational effort. The filter with soft constraints requires only 

slightly (14%) more computational effort than the unconstrained filter, but the 

filter with hard constaints requires about four times the computational effort of 

the unconstrained filter. This is because of the additional quadratic programming 

problem that is required for hard constraints. However, computational effort is not 

a critical i^ue for the particular apphcation of turbofan health estimation since .the 

filtering is performed on ground-based computers after each flight. 

7    Conclusion and Discussion 

We have presented two methods for incorporating hnear state inequality constraints 

in a Kalman filter. The first method incorporated hard constraints into the Kalman 

filter to maintain the state variable estimates within a user-defined envelope. The 

second method incorporated soft constraints into the Kalman filter to ensure that 

the state variable estimates vary slowly with time. The simulation results demon- 

strate the effectiveness of these methods, particularly for turbofan engine health 

estimation. 

If the system whose state variables are being estimated has known state variable 

constraints, then those constraints can be incorporated into the Kalman filter as 

shown in this paper. However, in practice, the constraints enforced in the filter 

might be more relaxed than the true constraints. This allows the filter to correct 

state variable estimates in a direction that the true state variables might never 
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change. This is a departure from strict adherence to theory, but in practice this 

improves the performance of the filter. This is an implementation issue that is 

conceptually similar to tuning a standard Kalman filter. 

It was seen in Theorem 2 that the filter with hard constraints has a smaller 

estimation error covariance than the unconstrained Kalman filter. At first this seems 

counterintuitive, since the standard Kalman filter is by definition the minimum 

variance filter. However, we have changed the problem by introducing state variable 

constraints. Therefore, the standard Kalman filter is not the minimum variance 

filter for the turbofan engine health estimation problem, and we can do better with 

the constrained Kalman filter. 

We saw that the filter with hard constraints required a much larger computa- 

tional effort than the standard Kalman filter. This is due to the addition of the 

quadratic programming problem that must be solved in the constrained Kalman 

filter. The engineer must therefore perform a tradeoff between computational ef- 

fort and estimation accuracy. For real time applications the improved estimation 

accuracy may not be worth the increase in computational effort. 

It was seen in Figures 2 and 3 that although the constrained filters improve 

the estimation accuracy, the general trend of the state variable estimates does not 

change with the introduction of state constraints. This is because the constrained 

filters are based on the unconstrained Kalman filter. The constrained filter estimates 

therefore have the same shape as the unconstrained estimates until the constraints 

are violated, at which point the state variable estimates are projected onto the 

edge of the constraint boundary. The constrained filters presented in this paper 

are not qualitatively different than the standard Kalman filter; they are rather a 

quantitative improvement in the standard Kalman filter. 

Note that the Kalman filter works well only if the assumed system model matches 

reality fairly closely. The method presented in this paper, by itself, will not work 

well if there are large sensor biases or hard faults due to severe component failures. 

A mission-critical implementation of a Kalman filter should always include some sort 

of residual check to verify the validity of the Kalman filter results, particularly for 

the application of turbofan engine health estimation considered in this paper [3, 26]. 
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Although we have considered only linear state constraints, it is not conceptually 

difficult to extend this paper to nonlinear constraints. If the state constraints are 

nonlinear they can be linearized as discussed in [2]. 

Further work along the lines of this research could focus on combining our work 

with [27] in order to guarantee convergence in the presence of nonlinear constraints. 

Other efforts could explore the incorporation of state constraints for optimal smooth- 

ing, or the use of state constraints in ifoo filtering [28]. Further work could also focus 

on integrating the nonhnear simulation logic in DIGTEM [8, 22] with the Kalman 

filter to obtain more complete results. This would also allow us to more easily 

test the Kalman filter at various operating points without translating data from 

DIGTEM to MATLAB. 

References 

[1] D. Massicotte, R. Morawski, and A. Barwicz, Incorporation of a positivity 

constraint into a Kalman-filter-based algorithm for correction of spectrometric 

data, IEEE Transactions on Instrumentation and Measurement 44(1) pp. 2-7, 

February 1995. 

[2] D, Simon and T. Chia, Kalman filtering with state equality constraints, IEEE 

Transaction on Aerospace and Electronic Systems, 39(1) pp. 128-136, Jaauary 

2002. 

[3] D. Doel, TEMPER - A gas-path analysis tool for commercial jet engines, ASME 

Journal of Engineering for Gas Turbines and Power (116) pp. 82-89, Jan. 1994. 

[4] D, Doel, An assessment of weighted-least-squares-based gas path analysis, 

ASME Journal of Engineering for Gas Turbines and Power (116) pp. 366-373, 

April 1994. 

[5] H. DePold and P. Gass, The appHcation of expert systems and neural networks 

to gas turbine prognostics and diagnostics, ASME Journal of Engineering for 

Gas Turbines and Power (121) pp. 607-612, Oct. 1999. 

NASAnM—2003-212111 21 



[6] A. Volponi, H. DePold, and R. Ganguli, The use of Kalman filter and neural 

network methodologies in gas turbine performance diagnostics: a comparative 

study, Proceedings of ASME TurboExpo 2000, pp. 1-9, May 2000. 

[7] T. Kobayashi and D.L. Simon, A hybrid neural network-genetic al- 

gorithm technique for aircraft engine performance diagnostics, 37th 

AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 2001. 

[8] C. Daniele, S. Krosel, J. Szuch, and E. Westerkamp, Digital computer program 

for generating dynamic turbofan engine models (DIGTEM), NASA Technical 

Memorandum 83446, September 1983. 

[9] J. Szuch, S. Krosel, and W. Bruton, Automated procedure for developing hybrid 

computer simulations of turbofan engines, NASA Technical Paper 1851, August 

1982. 

[10] B. Priedland, Treatment of bias in recursive filtering, IEEE Transactions on 

Automatic Control AC14(4) pp. 359-367, Aug. 1969. 

[11] H. Lambert, A simulation study of tubofan engine deterioration estimation 

using Kalman filtering techniques, NASA Technical Memorandum 104233, June 

1991. 

[12] M. Roemer and G. Kacprzynski, Advanced diagnostics and prognostics for tur- 

bine engine risk assessment, IEEE Aerospace Conference, pp. 345-353, March 

2000. 

[13] B. Anderson and J. Moore, Optimal Filtering (Prentice Hall, Englewood CHfFs, 

New Jersey, 1979). 

[14] R. Fletcher, Practical Methods of Optimization - Volume 2: Constrained Op- 

timization (John Wiley & Sons, New York, 1981). 

[15] P. Gill, W. Murray, and M. Wright, Practical Optimization (Academic Press, 

New York, 1981). 

NASA/TM—2003-212111 22 



[16] T. Kailath, A. Sayed, and B. Hassibi, Linear Estimation (Prentice Hall, Upper 

Saddle River, New Jersey, 2000). 

[17] A. Sayed, A framework for state-space estimation with uncertain models, IEEE 

Transactions on Automatic Control 46(7), pp. 998-1013, July 2001. 

[18] J. Tse, J. Bentsman, and N. Miller, Minimax long range parameter estimation, 

IEEE Conference on Decision and Control, Lake Buena Vista, Florida, pp. 277- 

282, December 1994. 

[19] I. Ismail, and F. Bhinder, Simulation of aircraft gas turbine engines, ASME 

Journal of Engineering for Gas Turbines and Power (113)1 pp. 95-99, 1991. 

[20] Y. Najjar, Comparison of modelling and simulation results for single and twin- 

shaft gas turbine engines, International Journal of Power and Energy Systems 

(18)1 pp. 29-33, 1998. 

[21] Z. Xie, M. Su, and S. Weng, Extensible object model for gas turbine engine 

simulation, Applied Thermal Engineering 21(1), pp. 111-118, Jan. 2001. 

[22] C. Daniele and P. McLaughlin, The real-time performance of a parallel, non- 

Hnear simulation technique applied to a turbofan engine, in ModeHng and Sim- 

ulation on Microcomputers: 1984 (R. Swartz, Ed.) Society for Computer Sim- 

ulation, pp. 167-171, 1984, 

[23] W. Merrill, Identification of multivariable high-performance turbofan engine 

dynamics from closed-loop data, AIAA Journal of Guidance, Control, and Dy- 

namics (7)6 pp. 677-683, Nov. 1984. 

[24] C. Chen, Linear System Theory and Design (Oxford University Press, New 

York, 1999). 

[25] O. Sasahara, JT9D engine/module performance deterioration results from back 

to back testing, International Symposium on Air Breathing Engines, pp. 528- 

535, 1985. 

NASAH'M—2003-212111 23 



[26] A. Gelb, Applied Optimal Estimation (MIT Press, Cambridge, Massachusetts, 

1974). 

[27] J. De Geeter, H. Van Brussel, and J. De Schutter, A smoothly constrained 

Kalman filter, IEEE Transactions on Pattern Analysis and Machine Intelligence 

19(10) pp. 1171-1177, October 1997. 

[28] D. Simon and H. El-Sherief, Hybrid Kalman / Minimax Filtering in Phase- 

Locked Loops, Control Engineering Practice 4(5) pp. 615-623, October 1996. 

NASA/TM—2003-212111 24 



State 
Low Pressure TQirbine Rotor Speed 
High Pressure Turbine Rotor Speed 
Compressor Mass Flow 
Combustor Inlet Temperature 
Combustor Mass Flow 
High Pressure Turbine Inlet Temperature 
High Pressure Turbine Mass Flow 
Low Pressure Turbine Inlet Temperature 
Low Pressure Turbine Mass Flow 
Augmentor Inlet Temperature 
Augmentor Mses Flow 
Nozzle Inlet Temperature 
Duct Fluid Momentum 
Augmentor Fluid Momentum 
Duct Mass Flow 
Duct Temperature 

Nominal Value 
6140 RPM 
9395 RPM 
0.457 kg/s 
965 K 
0.264 kg/s 
1593 K 
1.48 kg/s 
1129 K 
1.79 kg/s 
790 K 
1.46 kg/s 
790 K 
53.6 kg/s2 
103 kg/s2 
4.52 kg/s 
571 K 

Table 1: Turbofan states. 

Control Nominal Value 
Combustor Fuel Flow 
Augmentor Fuel Flow 
Nozzle Throat Area 
Nozzle Exit Area 
Fan Vane Angle 
Compressor Van Angle 

0.37 kg/s 
Okg/s 
430 cm2 
492 cm2 
-25 deg 
-20 deg 

Table 2: Ibrbofan controls. 
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Health Parameter Nominal Value 
Fan Airflow 102 kg/s 
Fan Efficiency 0.82 
Compressor Airflow 48.7 kg/s 
Compressor Efficiency 0.83 
High Pressure Turbine Airflow 41.0 kg/s 
High Pressure Turbine Enthalpy Change 101 J/kg 
Low Pressure Turbine Airflow 48.3 kg/s 
Low Pressure Turbine Enthalpy Change 27.1 J/kg 

Table 3: Turbofan health parameters. 

Measurement Nominal Value SNR 
Low Pressure Turbine Rotor Speed 6140 RPM 150 
High Pressure Turbine Rotor Speed 9395 RPM 150 
Duct Pressure 19.0 N/cm^ 200 
Duct Temperature 571 K 100 
Compressor Inlet Pressure 20.5 N/cm^ 200 
Compressor Inlet Temperature 577 K 100 
Combustor Pressure 97.5 N/cm^ 200 
Combustor Inlet Temperature 965 K 100 
Low Pressure Turbine Inlet Pressure 26.8 N/cm2 100 
Low Pressure Turbine Inlet Temperature 1130 K 70 
Augmentor Inlet Pressure 17.4 N/cm2 100 
Augmentor Inlet Temperature 790 K 70 

Table 4: Turbofan measurements. 
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Estimation Error (%) 
Health Unconstrained Soft Constrained Hard Constrained 
Parameter Filter Filter Filter 
Fan Airflow 0.123 0.105 0.139 
Fan Efficiency 0.177 0.166 0.113 
Compressor Airflow 0.145 0.132 0.113 
Compressor Efficiency 0.102 0.086 0.059 
HPT Airflow 0.116 0.100 0.101 
HPT Enthalpy Change 0.093 0.081 0.055 
LPT Airiow 0.104 0.090 0.109 
LPT Enthalpy Change 0.181 0.168 0.118 
Average 0.130 0.116 0.101 

Table 5: Kalman filter estimation errors. HPT = High Pressure Turbine, 
and LPT = Low Pressure Turbine. The numbers shown are RMS estimation 
errors (percent) averaged over eight simulations where each simulation had one 
health parameter degradation while the other seven health parameters were 
unchanged. 

Health True Degradation 
Fan Airflow -1% 
Fan Efficiency -2% 
Compressor Airflow -3% 
Compressor Efficiency -2% 
HPT Airflow +3% 
HPT Enthalpy Change -2% 
LPT Airflow +2% 
LPT Enthalpy Change -1% 

Table 6: Health parameter degradation amounts for test scenario. 
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Estimation Error I %) 
Health Unconstrained Soft Constrained Hard Constrained 
Parameter Filter Filter Filter 
Fan Airflow 0.129 0.113 0.089 
Fan Efficiency 0.163 0.149 0.105 
Compressor Airflow 0.152 0.146 0.103 
Compressor Efficiency 0.101 0.087 0.052 
HPT Airflow 0.119 0.114 0.076 
HPT Enthalpy Change 0.092 0.078 0.050 
LPT Airflow 0.104 0.091 0.057 
LPT Enthalpy Change 0.168 0.155 0.111 
Average 0.128 0.116 0.080 

Table 7: Kalman filter estimation errors. HPT = High Pressure Turbine, 
and LPT = Low Pressure Turbine. The numbers shown are RMS estimation 
errors (percent) averaged over 16 simulations, where each simulation had a 
linear degradation of all eight health parameters. 
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Figure 1: Schematic representation of turbofan engine 
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Figure 2: Kalman filter estimates of health parameters. The true health parameter changes 
were a -3% change in the first parameter, and zero change in the other seven parameters. 
The true health parameter changes are shown as heavy lines, and the filter estimates are 
shovm as lighter lines. 
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Figure 3: Kalman filter estimates of liealth parameters. The true health parameter changes 
were various values in between-3% and +3%. The true health parameter changes are 
shown as heavy lines, and the filter estimates are shown as lighter lines. 
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